

FMS6146

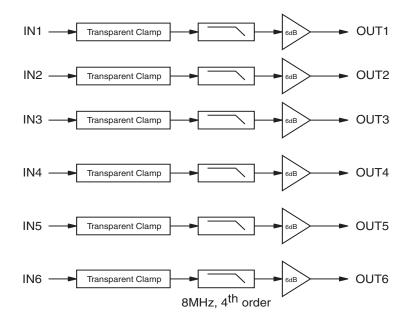
Low Cost Six Channel 4th Order Standard Definition Video Filter Driver

Features

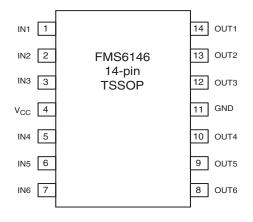
- Six fourth-order 8MHz (SD) filters
- Transparent input clamping
- Dual video load drive (2Vpp, 75Ω)
- AC or DC-coupled inputs
- AC or DC-coupled outputs
- DC-coupled outputs eliminate AC-coupling capacitors
- 5V only
- Lead (Pb) Free TSSOP-14 package

Applications

- Cable set top boxes
- Satellite set top boxes
- DVD players
- HDTV
- Personal video recorders (PVR)
- Video on demand (VOD)


Description

The FMS6146 Low Cost Video Filter (LCVF) is intended to replace passive LC filters and drivers with a low-cost integrated device. Six 4th order filters provide improved image quality compared to typical 2nd or 3rd order passive solutions.


The FMS6146 may be directly driven by a DC-coupled DAC output or an AC-coupled signal. Internal diode clamps and bias circuitry may be used if AC-coupled inputs are required (see *Applications* section for details).

The outputs can drive AC or DC-coupled single (150Ω) or dual (75Ω) loads. DC-coupling the outputs removes the need for output coupling capacitors. The input DC levels will be offset approximately +280mV at the output (see *Applications* section for details).

Functional Block Diagram

Pin Configurations

Pin Assignments

Pin#	Pin	Туре	Description
1	IN1	Input	Video input, Channel 1
2	IN2	Input	Video input, Channel 2
3	IN3	Input	Video input, Channel 3
4	V _{CC}	Input	+5V supply, do not float
5	IN4	Input	Video input, Channel 4
6	IN5	Input	Video input, Channel 5
7	IN6	Input	Video input, Channel 6
8	OUT6	Output	Filtered video output, Channel 6
9	OUT5	Output	Filtered video output, Channel 5
10	OUT4	Output	Filtered video output, Channel 4
11	GND	Output	Must be tied to ground, do not float
12	OUT3	Output	Filtered output, Channel 3
13	OUT2	Output	Filtered output, Channel 2
14	OUT1	Output	Filtered output, Channel 1

Reliability Information

Parameter	Min.	Тур.	Max.	Unit
Junction Temperature			150	°C
Storage Temperature Range	-65		150	°C
Lead Temperature (Soldering, 10s)			300	°C
Thermal Resistance (θ_{JA}) , JEDEC Standard Multi-Layer Test Boards, Still Air		90		°C/W

Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
DC Supply Voltage	-0.3	6	V
Analog and Digital I/O	-0.3	V _{CC} +0.3	V
Output Current Any One Channel, Do Not Exceed		50	mA

Recommended Operating Conditions

Parameter	Min.	Тур.	Max.	Unit
Operating Temperature Range	0		70	°C
V _{CC} Range	4.75	5.0	5.25	V

DC Electrical Characteristics

Operating Conditions: ($T_C = 25^{\circ}C$, $V_{CC} = 5.0V$, $R_{source} = 37.5\Omega$, all inputs AC coupled with $0.1\mu F$, all outputs AC coupled with $220\mu F$ into 150Ω loads; unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
I _{CC}	Supply Current ¹	FMS6146 no load		35	55	mA
V _{IN}	Video Input Voltage Range	Referenced to GND if DC-coupled		1.4		V _{pp}
PSRR	Power Supply Rejection Ratio	DC (All Channels)		-50		dB

AC Electrical Characteristics

Operating Conditions: ($T_C = 25^{\circ}C$, $V_{IN} = 1V_{pp}$, $V_{CC} = 5.0V$, $R_{source} = 37.5\Omega$, all inputs AC coupled with $0.1\mu F$, all outputs AC coupled with $220\mu F$ into 150Ω loads; unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
AV	Channel Gain ¹	All Channels	5.6	6.0	6.6	dB
f _{1dB}	-1dB Bandwidth ¹	All Channels	4.5	6.8		MHz
f _c	-3dB Bandwidth	All Channels		7.8		MHz
f _{SB}	Attenuation (Stopband Reject)	All Channels at f = 27MHz		48		dB
dG	Differential Gain	All Channels		0.3		%
dφ	Differential Phase	All Channels		0.6		٥
THD	Output Distortion (All Channels)	V _{out} = 1.8V _{pp} , 1MHz		0.4		%
X _{TALK}	Crosstalk (Channel-to-Channel)	at 1MHz		-60		dB
SNR	Signal-to-Noise Ratio	All Channels, NTC-7 Weighting: 100kHz to 4.2MHz		75		dB
t _{pd}	Propagation Delay	Delay from Input-to-Output, 4.5MHz		59		ns

Notes:

1. 100% tested at 25°C

Typical Performance Characteristics

Operating Conditions: ($T_C = 25^{\circ}C$, $V_{CC} = 5.0V$, $R_{source} = 37.5\Omega$, all inputs AC coupled with $0.1\mu F$, all outputs AC coupled with $220\mu F$ into 150Ω loads; unless otherwise noted)

Figure 1. Frequency Response

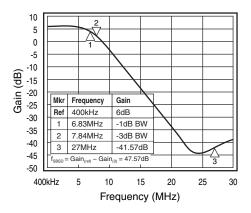


Figure 3. Noise vs. Frequency

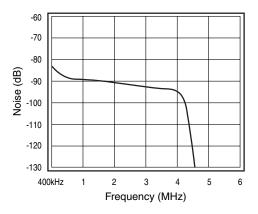
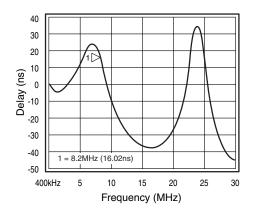
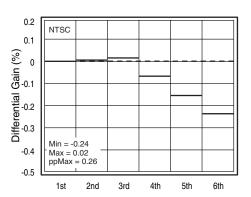
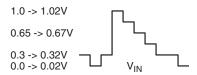
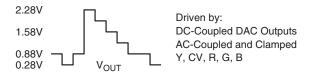


Figure 5. Differential Phase

Figure 2. Group Delay vs. Frequency


Figure 4. Differential Gain



Applications Information

Application Circuits

The FMS6146 Low Cost Video Filter (LCVF) provides 6dB gain from input to output. In addition, the input will be slightly offset to optimize the output driver performance. The offset is held to the minimum required value to decrease the standing DC current into the load. Typical voltage levels are shown in the diagram below:

There will be a 280mV offset from the DC input level to the DC output level. V_{OUT} = 2 * V_{IN} + 280mV

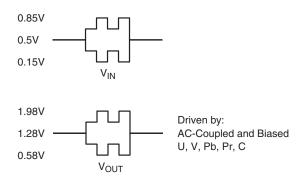


Figure 6. Typical voltage levels

The FMS6146 provides an internal diode clamp to support AC-coupled input signals. If the input signal does not go below ground, the input clamp will not operate. This allows DAC outputs to directly drive the FMS6146 without an AC coupling capacitor. When the input is AC-coupled, the diode clamp will set the sync tip (or lowest voltage) just below ground. The worst-case sync tip compression due to the clamp will not exceed 7mV. The input level set by the clamp combined with the internal DC offset will keep the output within its acceptable range.

For symmetric signals like Chroma, U, V, Pb and Pr, the average DC bias is fairly constant and the inputs can be AC-coupled with the addition of a pull-up resistor to set the DC input voltage. DAC outputs can also drive these same signals without the AC

coupling capacitor. A conceptual illustration of the input clamp circuit is shown below:

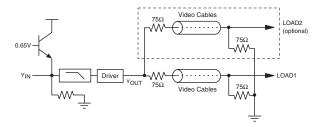


Figure 7. Input clamp circuit

I/O Configurations

For DC-coupled DAC drive with DC-coupled outputs, use this configuration:

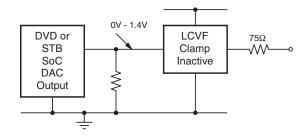


Figure 8. DC-coupled I/O configuration

Alternatively, if the DAC's average DC output level causes the signal to exceed the range of 0V to 1.4V, it can be AC-coupled as follows:

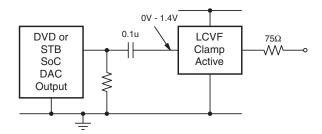


Figure 9. AC-coupled I/O configuration

When the FMS6146 is driven by an unknown external source or a SCART switch with its own clamping circuitry the inputs should be AC-coupled like this:

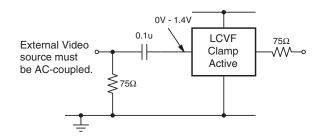


Figure 10. SCART I/O configuration

The same method can be used for biased signals with the addition of a pull-up resistor to make sure the clamp never operates. The internal pull-down resistance is $800k\Omega$ ±20% so the external resistance should be $7.5M\Omega$ to set the DC level to 500mV:

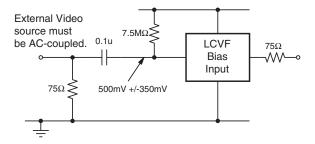


Figure 11. Biased SCART I/O configuration

The same circuits can be used with AC-coupled outputs if desired.

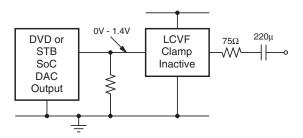


Figure 12. DC-coupled inputs, AC-coupled outputs

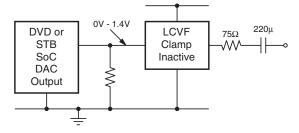


Figure 13. AC-coupled inputs and outputs

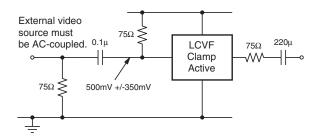


Figure 14. Biased AC-coupled inputs, AC-coupled outputs

NOTE: The video tilt or line time distortion will be dominated by the AC-coupling capacitor. The value may need to be increased beyond 220µF in order to obtain satisfactory operation in some applications.

Power Dissipation

The FMS6146 output drive configuration must be considered when calculating overall power dissipation. Care must be taken not to exceed the maximum die junction temperature. The following example can be used to calculate the FMS6146's power dissipation and internal temperature rise.

$$T_i = T_A + P_d \cdot \theta_{JA}$$

where:
$$P_d = P_{CH1} + P_{CH2} + P_{CH3}$$
 and $P_{CHx} = V_{CC} \cdot I_{CH} - (V_O^2/R_L)$

where:
$$V_0 = 2V_{IN} + 0.280V$$

$$I_{CH} = (I_{CC}/6) + (V_O/R_L)$$

V_{IN} = RMS value of input signal

$$I_{CC} = 35mA$$

$$V_{CC} = 5V$$

R_I = channel load resistance

Board layout can also affect thermal characteristics. Refer to the *Layout Considerations* section for more information.

The FMS6146 is specified to operate with output currents typically less than 50mA, more than sufficient for a dual (75Ω) video load. Internal amplifiers are current limited to a maximum of 100mA and should withstand brief duration short circuit conditions, however this capability is not guaranteed.

Layout Considerations

General layout and supply bypassing play major roles in high frequency performance and thermal characteristics. Fairchild offers a demonstration board, FMS6146DEMO, to use as a guide for layout and to aid in device testing and characterization. The FMS6146DEMO is a 4-layer board with a full power and ground plane. Following this layout configuration will provide the optimum performance and thermal characteristics. For optimum results, follow the steps below as a basis for high frequency layout:

- Include 1μF and 0.1μF ceramic bypass capacitors
- Place the 1μF capacitor within 0.75 inches of the power pin
- Place the 0.1μF capacitor within 0.1 inches of the power pin
- For multi-layer boards, use a large ground plane to help dissipate heat
- For 2 layer boards, use a ground plane that extends beyond the device by at least 0.5"
- Minimize all trace lengths to reduce series inductances

Typical Application Diagram

The following circuit may be used for direct DC-coupled drive by DACs with an output voltage range of 0V to 1.4V. AC-coupled or DC-coupled outputs may be used with AC-coupled outputs offering slightly lower power dissipation

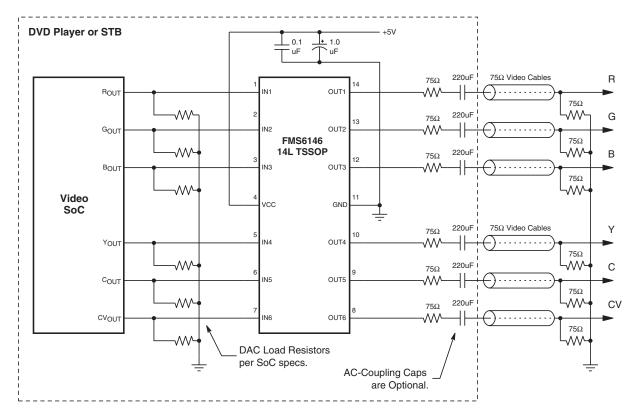
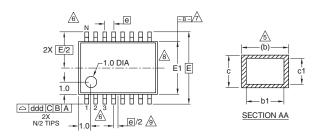
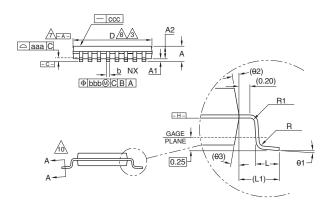




Figure 15. Typical application diagram

Mechanical Dimensions

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

TSSOP-14					
SYMBOL	MIN	NOM	MAX		
Α	_	_	1.10		
A1	0.05	_	0.15		
A2	0.85	0.90	0.95		
L	0.50	0.60	0.75		
R	0.09	_	-		
R1	0.09	_	-		
b	0.19	_	0.30		
b1	0.19	0.22	0.25		
С	0.09	_	0.20		
c1	0.09	-	0.16		
0 1	0°	_	8°		
L1	1.0 REF				
aaa	0.10				
bbb		0.10			
ccc		0.05			
ddd		0.20			
е		0.65 BSC			
0 2		12° REF			
0 3	12° REF				
D	4.90 5.00 5.10				
E1	4.30 4.40 4.50				
Е	6.4 BSC				
е	0.65 BSC				
N		14			

NOTES:

- 1 All dimensions are in millimeters (angle in degrees).
- 2 Dimensioning and tolerancing per ASME Y14.5-1994.
- 🚵 Dimensions "D" does not include mold flash, protusions or gate burrs. Mold flash protusions or gate burrs shall not exceed 0.15 per side .
- 🛕 Dimension "E1" does not include interlead flash or protusion. Interlead flash or protusion shall not exceed 0.25 per side.
- Dimension "b" does not include dambar protusion. Allowable dambar protusion shall be 0.08mm total in excess of the "b" dimension at maximum material condition. Dambar connot be located on the lower radius of the foot. Minimum space between protusion and adjacent lead is 0.07mm for 0.5mm pitch packages.
- Terminal numbers are shown for reference only.
- \triangle Datums $\overline{-A}$ and $\overline{-B}$ to be determined at datum plane $\overline{-H}$.
- Dimensions "D" and "E1" to be determined at datum plane ☐ H ─.
- (a) This dimensions applies only to variations with an even number of leads per side. For variation with an odd number of leads per side, the "center" lead must be coincident with the package centerline, Datum A.
- Cross sections A A to be determined at 0.10 to 0.25mm from the leadtip.

Ordering Information

Model	Part Number	Lead Free	Package	Container	Pack Qty.
FMS6146	FMS6146MTC14_NL	Yes	TSSOP-14	Tube	94
FMS6146	FMS6146MTC14X_NL	Yes	TSSOP-14	Tape and Reel	2400

Temperature Range: 0°C to +70°C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FAST®		IntelliMAX™	POP™	SPM™	
	ActiveArray™	FASTr™	ISOPLANAR™	Power247™	Stealth™
	Bottomless™	FPS™	LittleFET™	PowerEdge™	SuperFET™
	CoolFET™	FRFET™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
	CROSSVOLT™	GlobalOptoisolator™	MicroFET™	PowerTrench®	SuperSOT™-6
	DOME™	GTO TM	MicroPak™	QFET®	SuperSOT™-8
	EcoSPARK™	HiSeC™	MICROWIRE™	QS™	SyncFET™
	E ² CMOS TM	I ² C TM	MSX TM	QT Optoelectronics™	TinyLogic [®]
	EnSigna™	i-Lo TM	MSXPro™	Quiet Series™	TINYOPTO™
FACT™ ImpliedDisconnect™		OCX TM	RapidConfigure™	TruTranslation™	
FACT Quiet Series™		OCXPro [™]	RapidConnect™	UHC™	
Across the board. Around the world.™ The Power Franchise® Programmable Active Droop™		OPTOLOGIC [®] OPTOPLANAR™ PACMAN™	µSerDes™ SILENT SWITCHER® SMART START™	UltraFET [®] UniFET [™] VCX [™]	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I15